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Abstract: Three sequential data assimilation schemes (successive corrections, optimal 
interpolation and analysis correction) are applied to a model in atmospheric chemistry 
and oceanography. The model simulates the interaction of the various forms of carbon 
that are stored in three regimes: the atmosphere, the shallow ocean, and the deep ocean. 
Implementation issues and numerical results from some preliminary investigations are 
presented.  
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1. INTRODUCTION 
 

The concept of data assimilation normally refers to 
the process of modifying (or updating) the model 
state variables of a forecast model with observed 
information during the time integration of the model. 
Observations valid at a certain time will influence the 
model state not only at the observation time but also, 
in case of a forward data assimilation, at future times 
within the predictability range. In other words, by 
using data assimilation the time history of 
observations will help to improve the initial 
conditions for numerical forecast model runs.  
The basic components of forward data assimilation 
were introduced operationally already 50 years ago 
together with barotropic forecast models by Gilchrist 
and Cressman (1954), and Bergthorsson and Döös 
(1955). Although many of the assimilation 
procedures at that time were formulated in an ad hoc 
manner, they included basic important components 
like quality control, spatial filtering and spatial 
interpolation. 
The purpose of this study is to describe how three 
sequential data assimilation schemes (successive 
corrections, optimal interpolation and analysis 
correction) are applied to a model in atmospheric 

chemistry and oceanography. Implementation details 
and numerical results are also discussed. 
 
 

2. MATHEMATICAL MODEL 
 
The model developed by Walker (1991) simulates the 
interaction of the various forms of carbon that are 
stored in three regimes: the atmosphere, the shallow 
ocean, and the deep ocean. An informative 
background article is available at a Web site 
maintained by the Lighthouse Foundation. See also 
Martin (2001). 
The five principal variables of the model 

),,,,( dsdsp αασσ  are all functions of time: p  

represents the partial pressure of carbon dioxide in 
the atmosphere, sσ  is the total dissolved carbon 

concentration in the shallow ocean, dσ  is the total 

dissolved carbon concentration in the deep ocean, 

sα  is the alkalinity in the shallow ocean, and dα  

represents the alkalinity in the deep ocean. 
Three additional quantities ),,( sss pch  are involved 

in the equilibrium equations in the shallow ocean: sh  

- hydrogen carbonate in the shallow ocean, sc  - 

carbonate in the shallow ocean, and sp  - partial 



pressure of gaseous carbon dioxide in the shallow 
ocean. 
The rate of change of the five principal variables is 
given by five ordinary differential equations. The 
exchange between the atmosphere and the shallow 
ocean involves a constant characteristic transfer time 
d  and a source term )(tf . 
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The equations describing the exchange between the 
shallow and deep oceans involve sv  and dv , the 

volumes of the two regimes. 
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The equilibrium between carbon dioxide and the 
carbonates dissolved in the shallow ocean is 
described by three nonlinear algebraic equations: 
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We used in the numerical simulations the following 
values for the constants involved in the model 

equations: 64.8=d , 2
1 1095.4 ⋅=µ , 2

2 1095.4 −⋅=µ , 

12.0=sv ,  23.1=dv , 310−=w , 4
1 1019.2 −⋅=k , 

5
2 1012.6 −⋅=k , 997148.03 =k  and 2

4 1079.6 −⋅=k . 

The source term )(tf  describes the burning of fossil 

fuels in the modern industrial era. We will use a time 
interval that starts about a thousand years ago and 
extends a few thousand years into the future 
 

. 50001000 ≤≤ t                         (4) 
 

The initial values at the moment of time 1000=t  
are: 00.1=p , 01.2=sσ , 23.2=dσ , 20.2=sα , 

26.2=dα . These values characterize preindustrial 

equilibrium and remain nearly constant as long as the 
source term 0≡f . 

The following table describes one scenario for a 
source term )(tf  that models the release of carbon 

dioxide from burning fossil fuels, especially gasoline. 

The amounts begin to be significant after 1850, peak 
near the end of this century, and then decrease until 
the supply is exhausted. 
 

Table 1. Possible scenario for the source term that 
models the release of carbon dioxide from burning 

fossil fuels, especially gasoline. 
 

Year 1000 1850 1950 1980 2000 
Rate 0.0 0.0 1.0 4.0 5.0 

 
Year 2050 2080 2100 2120 2150 
Rate 8.0 10.0 10.5 10.0 8.0 

 
Year 2225 2300 2500 5000 
Rate 3.5 2.0 0.0 0.0 

 
 

 
 

Fig. 1. The plot of the source term f against time. 

The values in Table 1 were interpolated using 
piecewise cubic Hermite interpolation method.  

 
The two alkalinity variables of the model ( sα and 

dα ) are not plottet at all because they are almost 

constant throughhout this entire simulation. Initially, 
the carbon in the three regimes is nearly at 
equilibrium and so the amounts hardly change before 
1850. Over the period 25001850 ≤≤ t , Figure 1 
shows the additional carbon produced by burning 
fossil entering the system.  

 
 

3. DATA ASSIMILATION SCHEMES 
 
In this section we present three sequential data 
assimilation schemes: successive corrections, optimal 
interpolation and analysis correction. The general 
sequential data assimilation problem can be 
considered as the minimization of the cost function 
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with respect to )(ix . Here )(ixb  is a background 

state with error covariance matrix 1−
B , )(iy  is a 

vector of observations with covariance matrix 1−
R  



and H  is the (possibly nonlinear) observation 
operator which converts the model field )(ix  into an 

equivalent model observation value. The solution to 
the data assimilation problem, which we call the 
analysis, we write ax . Each of the data assimilation 

methods implemented approximates the solution to 
this minimization problem. Here we do not aim to 
give a full explanation of the schemes, but just 
briefly outline how each is implemented. Further 
details can be found in Martin et al. (1999). 
 
 
3.1 Successive corrections scheme 
 
The successive corrections method is an iterate 
algorithm, which can be written as 

))],(()([)()(1 ixHiyWixix jjj −+=+          (6) 

where )()(0 ixix b=  is the background state, j  is the 

iteration or correction index and W  is a weighting 
matrix. The algorithm is stopped after k  corrections, 

after which the analysis is given by ).()( ixix k

a =  For 

the experiments in these programs the weighting 
matrix is given by IW ×= 5.0 , where I  is the 
identity matrix.. 
 
 
3.2 Optimal interpolation scheme 
 
The optimal interpolation analysis is given by 

))],(()([)()( ixHiyKixix bba −+=            (7) 

with 
1)( −+= RHBHBHK TT .                 (8) 

If H  is a nonlinear operator then it should be 
linearized around a background state. 
 
 
3.3 Analysis correction scheme 
 
The analysis correction algorithm is written as 

))],(()([)()(1 ixHiyWQixix jjjj −+=+       (9) 

  ))],(()([)()(1 ixHiyQiyiy jjjj −−=+       (10) 

where )(0 iy  is the vector of observations, 
1−= RBHW T , 1)( −+= IHWQ . If H  is a nonlinear 

operator then its linearization around a background 
state should be used. The algorithm is stopped after 
k  corrections, after which the analysis is given by 

)()( ixix k

a = . 
 
 

4. IMPLEMENTATION ISSUES AND RESULTS 
 
The source code of the program was performed using 
Matlab language, version 6.1. 
 
4.1 Input data 
 
Below we describe how the program initiates a 
dialogue, asking for inputs from the user in the 
following order: 

- Please, choose an assimilation scheme: 
 

 
 

- How many iterations? 
 

 
 

- Use correct weighting matrices? 
 

 
 

- How many time steps between 
observations? 

 

 
 

- Noise on observations? 
 

 
 

- How read noise? 
 

 



 
- Variance of observation error 
 

 
 

This allows the user to set the variance of the random 
noise to be added to the observations. 
The user must then click OK on a dialogue box to 
perform the analysis, which represents the solution of 
the data assimilation problem. 
 

 
 
4.2 Output data 
 
The output from the oscillating system is two figures. 
Figure 1 shows the solution for the p  variable. The 

truth trajectory is shown by a dashed line, the 
background trajectory used is shown by a dashed-
dotted line and the observations used are shown by 
circles. The final analysis and forecast from the 
analysis is shown by a continuous line. 
 
 
4.3 True and background solution 
 
The true solution can be changed by changing either 
the parameters of the problem or the initial 
conditions. The background solution for the model is 
obtained by running the model from slightly different 
initial conditions. In this simulation we used the 
following values: 9.0=p , 1.2=sσ , 17.2=dσ , 

15.2=sα  and 3.2=dα .  
 
 

 
  
Fig. 2. True and background solution for the 

component dσ  of the state vector.  
 
An alternative method for generating the background 
would be to start the model using the true intial 
conditions with some random noise added. 

 
4.4 Error covariance matrices 
 
The code of  the program sets up the observation and 
background covariance matrices, R  and B . These 
are used in all schemes except the successive 
correction scheme. If the correct weighting matrices 
are requested then the true covariances are calculated 
using the known solution, otherwise these matrices 
are set to the identity. 
 
 
4.5 Successive corrections weighting matrix 

 

The weighting matrix W  for the successive 
corrections scheme is set in the code to be 5.0  times 
the identity matrix.  
 
 
4.6 Results 
 
The output from the programs is graphical, with 
figures as follows. Figures 3-5 contain the results of 
the data ssimilation for the successive correction 
method. The number of iterations was set to 5, the 
number of time steps between observations was set to 

25, and a random noise with variance equals to 410−  
was used. 
 

 
 
Fig. 3. The data assimilation results for the 

component p  of the model. Analysis scheme: 

successive correction.  
 
 

 
 
Fig. 4. The data assimilation results for the 

component sσ  of the model. Analysis scheme: 

successive correction.  
 



 
 
Fig. 5. Plot of error (truth – analysis) against time. 

Upper plot: error in p . Lower plot: error in sσ . 

Analysis scheme: successive correction.  
 
 
Figures 6-8 present the results of the data ssimilation 
for the optimal interpolation method using correct 
weighting matrices. The number of time steps 
between observations was set to 50, and a random 

noise with variance equals to 410−  was used. 
 

 
 
Fig. 6. The data assimilation results for the 

component p  of the model. Analysis scheme: 

optimal interpolation.  
 
 

 
 
Fig. 7. The data assimilation results for the 

component sσ  of the model. Analysis scheme: 

optimal interpolation.  

 
 
Fig. 8. Plot of error (truth – analysis) against time. 

Upper plot: error in p . Lower plot: error in sσ . 

Analysis scheme: optimal interpolation.  
 
 
Figures 9-11 contain the results of the data 
ssimilation for the optimal analysis correction 
method using correct weighting matrices. The 
number of time steps between observations was set to 
50, and a random noise with variance equals to 

410− was used. 
 

 
 
Fig. 9. The data assimilation results for the 

component p  of the model. Analysis scheme: 

analysis correction. 
 
 

 
 
Fig. 10. The data assimilation results for the 

component sσ  of the model. Analysis scheme: 

analysis correction. 
 



 
 
Fig. 11. Plot of error (truth – analysis) against time. 

Upper plot: error in p . Lower plot: error in sσ . 

Analysis scheme: analysis correction. 
 
 

5. CONCLUSIONS 
 

This study focused on three sequential data 
assimilation schemes (successive corrections, 
optimal interpolation and analysis correction), 
applied to a model in atmospheric chemistry and 
oceanography. The model simulates the interaction 
of the various forms of carbon that are stored in three 
regimes: the atmosphere, the shallow ocean, and the 
deep ocean.  
The equations of the model are mildly stiff, because 
the various chemical reactions take place on very 
different time scales. Efficient numerical schemes 
applied to different stiff ODEs from atmospheric 
chemistry are described in Zlatev (1995), Verwer and 
Simpson (1995) and Verwer et al. (1996). 
Implementation aspects and numerical results from 
some preliminary investigations were presented.  
There is a recent tendency in data assimilation to find 
the optimal location of the observations by using the 
adjoint sensitivity method (see Sandu et al. (2004)), 
as well as to combine the advantage of the numerical 
splitting schemes (see Bartholy et al. (2001)), 
variational methods (Dimitriu (1999), Daescu et al. 
(2000), Sandu et al. (2004), Dimitriu and Cuciureanu 
(2005)) and Kalman filter techniques (Chui and Chan 
(1987), Loon and Heemink (1997) and Segers 
(2002)). 
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